
JOURNAL OF COMPUTATIONAL PHYSICS 33, 382-396 (1979) 

Monte Carlo Solution of Schriidinger’s Equation for the Hydrogen Atom 
in a Magnetic Field 

YASUO TOMISHIMA AND JIRO OZAKI 

Department of Physics, Okayama University, Okayama, Japan 

Received May 31, 1978; revised February 6, 1979 

The analytical expressions suitable for the Monte Carlo calculation to obtain the solu- 
tion of Schrbdinger’s equation of the hydrogen atom in a magnetic field are developed. 
The energy values and the wavefunctions for the even states of m = 0 and 1 are obtained 
numerically and compared with other results based on the variational method. The agree- 
ment between them is rather good. 

1. INTRODUCTION 

In a recent paper [I] we reported a remark on the Monte Carlo solution of 
Schrodinger’s equation for molecular systems, in which the advantage of the technique 
developed by Grimm and Storer [2] was emphasized. Here we will apply this method 
to the problem of the hydrogen atom in a magnetic field. 

The solution of Schrodinger’s equation for the hydrogen atom in a magnetic field is 
very important in many branches of physics, i.e., atomic physics, astrophysics, solid 
state physics, etc. Unfortunately its exact solution is not available at present, so we 
have to be content with approximate solutions. For weak magnetic fields the perturba- 
tion method is usually applied and for very intense magnetic fields the adiabatic 
method based on the solution of free electrons in magnetic field is known to be effi- 
cient. For intermediate strength magnetic fields, however, there is no efficient method, 
the only available one is a variational method using some special analytic form of 
wavefunction. These aspects are fully explained in the review article by Garstang [3], 
where many important papers are cited. Since the Monte Carlo method does not need 
to assume a special form of wavefunction, it is appropriate to check the solution 
based on the variational method by the comparison with the results obtained by the 
Monte Carlo method. 

In Section 2, the analytical expressions which are necessary for the Monte Carlo 
calculation are derived. In Section 3, the method of calculation is explained, and 
Section 4 is devoted to the discussion of numerical results. 
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2. ANALYTICAL EXPRESSIONS 

The Hamiltonian for a hydrogenic atom in a constant magnetic field H along the 
z-axis can be written as 

a? = if0 + ie’, (2.1) 

~o-!!&2+qna-,&)+~ 
2imc ay (x2 + Y2), (2.2) 

Si?’ = -Ze2/r, (2.3) 

in the gauge where the vector potential A = H x r/2. 
If we adopt the atomic unit e = m = fi = 1, and a parameter y in place of H 

(p,,H/Ry = y, pO: Bohr magneton), Eqs. (2.2) and (2.3) are transformed into 

xb = - ; v2 + 5 (x -g - y g, + g (x2 + y2), (2.4) 

.P = -Z/r. (2.5) 

The problem of solving the Schrbdinger equation for the lowest energy state can be 
replaced by the following iteration process. (See Grimm and Storer [2], Tomishima 
and Ozaki [l]) That is, starting from an arbitrary function Y(O)(r), we define a series of 
functions !P)(r); 

YtN)(r) = 1 (r 1 e+(Jp-c) 1 r’) ?PNel)(r’) dr’, (2.6) 

where jI is a small parameter and C is a constant selected for convenience of numerical 
calculation. Then in the limit of N + cc, 

lim y(N)(r) = ~-~(h-C)yl(N-l)(r), 
N+=O (2.7) 

$2 YcN)(r) = const. #o(r), cw 

where E, and #o(r) are the eigenvalue and the eigenfunction for the ground state of the 
given Hamiltonian. 

The density matrix (r 1 exp(-p(&’ - C))l I“> in Eq. (2.6) can be approximated 
up to the order of $ as follows: 

(r , exp(+(&7 _ c>> , f) = e-(l/2Mw'w-c) + , e-wPo , rt> e-(1/2h9w'G'b-C), (2.9) 
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and Sondheimer and Wilson [4] has given the exact expression 

(r / e-“xu 1 r’) =f(jl) exp [ T (xy’ - yx’) 

- dPN(x - X’Y + (Y - v’)“) 

where 

v = l/2+3, 

g(P) = -$ coth (s 8), 

f@) = v1/2 2 cosech (% 8). 

Let us define a function xCN) in place of ?PN), 

X’N’(r) = e(1/2)8(ae”‘(r)-c)y(N)(r). 

?rv(z - zy2], (2.10) 

(2.11) 

(2.12) 

Upon substitution of Eqs. (2.9), (2.10), and (2.12) into (2.6), we have 

x(NV) =.%I 1 exp [$ (XY’ - ~-0 - gG%(x - x’j2 + (u - v’>“> 

- rv(z _ z’,2] . ,-s(~‘(r’)-C)X(N-l)(‘? &‘. (2.13) 

Since it is clear from the structure of the Hamiltonian &’ that the parity and the 
magnetic quantum number m are good quantum numbers, xfN) can be written in 
cylindrical coordinate system by the form 

xtN)(r) = & e-imQRkNnN)(p, 2). (2.14)l 

Substituting Eq. (2.14) in (2.13) and performing the integration with respect to 
$, we get finally the equation for Rjf’; 

*)(p, z) = 27$(p) e(1’2)mv8 j 11~1 [$ PP’ cosech ($- B)] 

x exp[-g(/3)(p2 + p’“) - TV(Z - z’)~] 

x exp [B i($, +zz,2)~,2 + C)] Rjfl)@‘, z’) p’ dp’ dz’, (2.15) 

where II,/ is the modified Bessel function of the first kind. 

1 As will be stated in Section 3, we have to express the value of the wave function as the density 
of psips in I$qnte Carlo method. Therefore the transform from complex x to real R is necessary 
for the present purpose. 
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Here we define the probability function Pl,l@, p’) and P(z, z’) for the purpose of 
Monte Carlo calculation in such a way as 

Jy Pl,l(p, p’) dp = JW P(z, 2’) dz = 1. (2.16) 
-cc 

That is 

2l~l+lg(2+lw/2~('(1 m 1 + 1) 

plmdp’ “I = T((2 + 1 m 1)/2) Klm1F((2 + 1 m 1)/2; 1 m 1 + 1; K2/4g) pe-g’*“fn’(Kp)’ 
(2.17) 

where F is a confluent hypergeometric function and 

K = -$- p’ * cosech ($- /3), (2.18) 

and 

P(z, 2’) = v1/2 exp[-rrv(z - z’)~]. (2.19) 

Then Eq. (2.15) can be rewritten as 

x exp [ - 5 tanh (5 8) P” + B (cpf2 +fzt2j1,2 + C + i my)] 

where 

x p’R;N-l’(p’, z’) dp’ dz’, (2.20) 

&,,~(p’> = sech (r 8) E (9 ; I m ( + 1; - s cosech(#) pf2), (2.21) 

and 

&, 6, -z) = n* - 4 
W) 

z=F(a, 6, -z). (2.22) 

If we write the wavefunction corresponding to the lowest energy for given magnetic 
quantum number m in the form 

(2.23) 

ALP, z) = exp (i B ( b2 ~z2jl,2 + C)) RIP, -G7 (2.24) 
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then from Eq. (2.8) RF) obtained by Eq. (2.20) tends to &,O in the limit of N--j co. 
Moreover, from Eq. (2.7) in the limit of N + co, Eq. (2.20) can be written as 

e-B(Em-c) PKn.O(f~ 4 

= s h?dP, P’> &, z? J-hdf’> 

x exp - 5 tanh C 

x p’R,,&‘, z’) dp’ dz’, (2.25) 

where E,, is the lowest energy eigenvalue corresponding to magnetic quantum number 
m. 

Integration with respect to p and z of Eq. (2.25) gives the equation for determining 
the energy values E,, ; 

e-B%,o s PK~,& 4 4 dz 
x P&~P, 4 4 dz. (2.26) 

The numerical calculation is to be carried out on the basis of Eqs. (2.20) and (2.26). 
Referring to Eqs. (2.17) and (2.18), one will see that the probability function Pl,@, p’) 
depends on both /3 and y, and this will be rather inconvenient for numerical calcula- 
tion. Therefore we will adopt the following change of scale: 

p = y-wp, z zzz y-vg B = Y-Y% 
Em, = YJ%, 7 c = $7, z = yvz. 

(2.27) 

Then Eqs. (2.20) and (2.26) become 

&?(P, 3 

x exp [- i tanh ($) P’~ + B ( W2 tz,2)1,2 + c + i m)] 

x j’e-l)(jY, 2’) dj’ dz’, (2.28) 

= s &&I exp [- $ tanh (#-) fi2 + p ( C-.2 +zi2jl,2 + !j m)] 



HYDROGEN ATOM IN MAGNETIC FIELD 387 

where 

P,&5, i;‘) = y-w,m,(“/-l/2ji, y-q’) 

= & cash ($) * [cosech ($1”” ($p’)1/2 

f~ m I (3PF cosech(!P)) 
’ P(I m l/2; 1 m I + 1; - 4 cosech(F) * jY2) 

x exp I-- i coth ($)(lj - sech ($)j~‘)~], 

F(& 2’) = y-vq-yy-1/2z, y-l/5’) 

= & exp (- v), 

B Q~,,&‘) = sech T P 0 ( 
lml 2 ; Iml+l; 

Ilml(z) = (2rz)li2 e-zIlml(z). 

- ; cosech p . p’“), 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

3. MONTE CARLO METHOD 

As stated in the preceeding section, z-parity of the wavefunction is a good quantum 
number, therefore we can predetermine the z-parity of the function RF’@, Z) in the 
process of iteration (2.28). For simplicity we restrict ourselves to the case of parity 
even, then the function RF)@-, Z) may be taken as always positive since the iteration 
process gives only the lowest energy state for given magnetic quantum number m 
and even parity, and the function is necessarily nodeless in (ii, @plane. 

Now the Monte Carlo method which simulates the iteration process can be des- 
cribed as follows. 

(i) First, we select Mf”)psips (the name comes from Anderson [5]) in the (cs, z)- 
plane which are distributed according to an arbitrarily selected density function 
jxg’(& 5). 

(ii) Then we multiply each M(O) psips by a factor 

~(~,P)=91,1@3exp[--tanh(~)p’+13((~~+~~~)~,~ +C+im)]. (3.1) 

This is done by replacing each psips (j& , ZJ (i = 1, 2,..., M(O)) by mi psips at the 
same position. The integer mi is chosen so that 

4 = WCiG,%)l+ 1 (3.2) 
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if the fractional part of W(& , Zi) is greater than a uniform random number between 
0 and I, and 

mi = W(& ,%I (3.3) 

otherwise. The square bracket means the greatest integer not exceeding its content. 
By this process we have now AP psips, 

M(l) = C mi . (3.4) 
i=l 

(iii) Each psips is executed a random walk by which the position of each psips 
(jj, Z) is displaced t o a position @- + LIP, 2 + AZ). The step size LIZ is governed by 
the probability function (cf. Eq. (2.31)) 

P(z + As, 2) = &jjiiXexp [- $& (3.5) 

therefore AZ is a random number of normal distribution with zero mean and variance 
8. While the step size Ap is governed by the probability function Plml@ + Ap, j5) 
defined by Eq. (2.30). Corresponding to a uniform random number s between 0 and I, 
we determine the displacement Ap by the equation 

s 
P+&J s= J7ml(~, rr> la. (3.6) 

0 

The’probabililty function &,i(j + Ap, jj) depends on both p and Ap whose behavior 
is illustrated in the Appendix. 

To facilitate the computation, we have made a table of Ap for s ranging from 0 to 1 
by the step 0.005 and jJ ranging from 0 to 2 by the step 0.1. Ajj is obtained by the four- 
point interpolation for given s and F if p < 2.0, and for the case of jj 2 2.0 Ap is 
calculated by using the table for /j = 2.0, because Ap is approximately independent on 
i for p > 2.0 (see Figs. Al and A2 in the Appendix). The accuracy of the calculation 
of Ap seriously affects the results obtained, so one has to calculate Ap as accurate as 
possible. 

One additional remark should be stated on the random walk. Since we are seeking 
the even parity solution, we may restrict our attention to the psips distribution on the 
half plane (z > 0). jj + AF is always positive owing to the nature of the probability 
function Pl,& + Ap, ji). While z + AZ happens to be negative, if this happens, we 
may replace it by its absolute value. 

(iv) It is clear that the new M(l) psips obtained after step (iii) are distributed 
according to the density function pR$@-, Z). Then repeating the process (ii) and (iii) 
where new AP psips are substituted in place of old &f(O) psips, we have the Monte 
Carlo simulation of the iteration process (2.28). 
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Energy Values 

Equation (2.29) may be transformed as 

e-BEm = M'l' i=l -!- 5' Qdd exp [- i tanh ($) Pi" + b ( (yjiz :zi2j1,2 + ?)I9 

(3.7) 

where pi and Zi stand for the coordinate of the ithpsips. Therefore at each end of step 
(iii) stated above, we calculate the right-hand side of Eq. (3.7) and get the value of 
Gno * As will be shown in the next section, the variation of E,, evaluated during the 
iteration process gives a measure of the convergence. 

Wavefunctions 

The (p, z)-dependent part of the wavefunction with a given magnetic quantum 
number m, C&&I, z), Eq. (2.23), is related to the distribution function pR,,,(p, z) 
of the psips in (p, z)-plane by Eq. (2.24). Therefore by making a histogram of psips 
distribution in (p, z)-plane with the weight exp(@Z/(p2 + z2)l12) after the convergence 
of the iteration process is reached, we will have the wavefunction &Jp, z). 

4. NUMERICAL RESULTS 

By the method described in the preceeding section, the energy values and the wave- 
functions of the hydrogen atom (Z = 1) are calculated for the magnetic quantum 
number m = 0, 1, and the magnetic field strength y = 0.1, 1.0, 10.0. 

Starting from a uniform distribution of 2,000 psips in the @-, Z)-plane, 400 iterations 
are performed for each m and y value. In these iteration processes, b is fixed to be 
0.05 during 1 to 100 iterations and 0.02 during 101 to 400 iterations. Only for the 

TABLE I 
The Energy Values of the Hydrogen Atom E,,,, o 

m Y %a, - Y 

0 0.1 -0.4963 f 0.0194 -1.0926 
1.0 -0.3344 5 0.0130 -1.6688 

10.0 3.3197 & 0.0739 -3.3606 
1 0.1 -0.1532 f 0.0028 -0.4064 

1.0 0.0564 f 0.0120 -0.8872 
10.0 3.8618 f 0.0748 -2.2764 

0 Last column shows the energy measured from the lowest Landau level in Rydbergs. 
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m = 0, y = 0.1 case, the first value of ,5? is taken to be 0.02 and the second one 0.01. 
The convergence is almost reached by the first 100 iterations. Therefore the psips 
distribution during iterations from 101 to 400 is used to make a histogram of the 
wavefunction. 

The energy values thus obtained, Em0 , are listed in Table I and compared with other 

0.1 0.5 1 ,-I. - 5 10 

ok 

m= 0. Even 
Y 

. 

FIG. 1. The energy of the m = 0 even state measured from the lowest Landau level is plotted 
a@nst the magnetic field strength y in Rydbergs. 0, Present results; 0, Habib et al. [7]; A, Rau and 
Spruch [S]; X, Smith et al. [9]; 0, Wallis and Bowlden [IO]; n , dos Santos and Brandi [II 1. 
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FIG. 2. The energy of the m = 1 even state measured from the Lowest Landau level is plotted 
a8ainst the magnetic field strength y in Rydber8s. l , Present results; o, dos Santos and Brandi [ll]; 
8, Larsen [12]; A, Rau and Spruch [S]; 0, Wallis and Bowlden [lo]; x, Praddaude [13]. 
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0 

FIG. 3. (a, b, c) Wavefunction &,o@, z), Eq. (2.24), in arbitrary scale: Marks show the histogram 
obtained by Monte Carlo calculation and solid lines show the analytical form Eq. (4.1) fitted by the 
least-squares method. 

results due to variational method in Figs. 1 and 2, where the energy measured from 
the lowest Landau level, y - 2&,&y), is plotted against the magnetic field strength y. 

These results show that the present calculation is in fairly good agreement with 
those obtained by the variational method. The overestimation of the weight factor 
near the origin which was pointed out in our previous paper [l], is automatically cut 
off in the present case because of the character of the probability function Blml(p, ii’). 
That is, as shown in the Appendix, the probability that the psips happens to come 
very near the origin is extremely small, therefore the overestimation of the weight 
factor scarcely occurs. This is one of the advantages of our present formulation. 

It should be noted that the energy values for m = -1 are higher than those for 
m = 1 exactly by y, while the (p, z)-dependent part of the wavefunction &Jp, z) is 
the same for both states, which is easily seen from Eqs. (2.28) and (2.29). 

The most significant advantage of the Monte Carlo method is in the fact that it is 
not necessary to assume beforehand some special analytical form of the wavefunction, 
that is, the distribution of the psips in (p, .&plane gives directly the shape of the wave- 
function. The form of p&,&p, z) is constructed by the method stated in Section 3 
and plotted in Fig. 3.2 

a We have prepared similar figures for m = 1 case and will send copies of these on request. 
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b 

FIGURE 3b. 
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I e 0, y = 10.0 A 

FIGURE 3c. 
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For comparison, the analytical form given by Rau et al. [6] 

4 mzO -x exp - $ pe - Z’r ( 1 
, (4.1) 

4 m-l = p exp ( - + p2 - Z’r), (4.2) 

whose variable parameter Z’, giving the best fit to our histogram, is determined by 
the least-squares method, is also shown in this figure. The values of Z’ obtained are as 
shown in Table II. 

TABLE II 

m=O m=l 

L 0.89402 0.1 0.89517 1.0 1.1567 10.0 0.41611 0.1 0.54190 1.0 1.0817 10.0 

Both the curve of analytical form and the histogram now obtained are normalized 
in such a way that J ~$p dpdz = 1. 

It is clearly demonstrated that the range of the electron distribution both in p and z 
directions becomes smaller as the strength of magnetic field increases. For a constant 
magnetic field the distribution of electron cloud not only in the p direction but also in 
the z direction are wider for m = 1 than for m = 0. 

In general the agreement of the histogram and the analytical form is rather good, 
but one can note that the extension in p direction of the histogram is slightly larger 
than that of the analytical form, while in the z-direction the histogram diminishes 
to zero faster than the analytical form. Therefore it would be better to find some 
simple analytical form which behaves more similarly to the histogram. 

The calculation for larger values of m, even state, can be done in a very similar 
manner to those mentioned in this paper. However to obtain the results for odd 
states by the Monte Carlo method, we have to develop the technique of treating the 
negative value of wavefunction by the psips distribution, or rather of finding the 
probability function P(z, z’) suitable for odd state. This is an interesting future prob- 
lem. 

APPENDIX: PROBABILITY FUNCTION P,,~(ji, p’) 

In this appendix, some additional remarks on the probability function PI,,&, ij’) 
defined by Eq. (2.30) are included. 

Case of m = 0: Plml(p, p’) can be written as 

cash ($)[cosech ($-)I”” (p/p’)l’z 1, (i @’ cosech ($)) 

x exp [- i coth ($)(p - sech ($) P_#)‘], (A:l) 

where &, is defined in Eq. (2.33). 
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Especially for p’ = 0, 

PO@, 0) = k coth ($) p exp [- 4’ coth ($) ~21 

andforj’> 1 and/?< 1, 

(A:2) 

(A:3) 

Case of m = 1: Pl,l@-, p’) can be rewritten as 

w, $1 = & cash (g) [cosech ($)]“” (j/p’)1’2 

~l(&5p’ cosech@/2)) 
’ P((3 ; 2; - ij cosech@) . ,T2) 

x exp [ ( 
B coth T 1 ( - p - sech ($) . p’r], (A:4) 

where f,(z) is defined by Eq. (2.33) and P by Eq. (2.22). 
Especially for p’ = 0, 

B B - ij;,(p, 0) = Q-$ (coth (-2-))3’2 p2 exp (- i coth (?) ~2) 

N (+)“’ P” ev (- Y$ pa) @ g I), 

and for p’ > 1 and fl< 1 

P,(p, p’) = & (-f~)l’~ exp [- + (6 - PY2] . (A:6) 

(A5) 

Figures Al and A2 clearly show how dependent these probability functions are on 
the values of p’ and p - j’. Equations (A3) and (A6) indicate that both PO and Pl 
have a similar form to the Gaussian distribution function, and fi is the variance of 
these functions. One can see in the figures that these functions are very similar to each 
other for the value of p’ > 1. On the other hand, for the small value of p’ (<0.5), the 
functions PO and Pl are rather different. For example, the maximum position of the 
functions for p’ = 0 is nearly at the position p N $I2 for m = 0 and p N (2mfl 
for m = 1. This behavior also can be seen in the figures. 
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FIG. Al. Probability function p&5, p’). 

m=I, P=o.oz 

-0.35 0 0.26 P-P- 

FIG. A2. Probability function p&, $1. 

58x/33/3-7 
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